M1.(a) (i) The power of an atom or nucleus to withdraw or attract electrons OR electron density OR a pair of electrons (towards itself)

Ignore retain

In a covalent bond
(ii) More protons / bigger nuclear charge

## Same or similar shielding / electrons in the same shell or principal energy level / atoms get smaller <br> Not same sub-shell <br> Ignore more electrons

(b) Ionic

If not ionic then $C E=0 / 3$
If blank lose M1 and mark on

Strong or many or lots of (electrostatic) attractions (between ions)
If molecules / IMF / metallic / atoms lose M2 + M3, penalise incorrect ions by 1 mark

Between + and - ions / between $\mathrm{Li}^{+}$and $\mathrm{F}^{-}$ions / oppositely charged ions Allow strong (ionic) bonds for max 1 out of M2 and M3
(c) Small electronegativity difference / difference $=0.5$

Must be comparative
Allow 2 non-metals
(d) (i) (simple) molecular Ignore simple covalent
(ii) $\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+2 \mathrm{HF}$

Ignore state symbols
Allow multiples
Allow $\mathrm{OF}_{2}$ written as $\mathrm{F}_{2} \mathrm{O}$
(iii) $45.7 \% \mathrm{O}$
$\left(\begin{array}{ll}0 & F\end{array}\right)$
$\left(\begin{array}{ll}\frac{45.7}{16} & \left.\frac{54.3}{19}\right)\end{array}\right.$
( 16 19)
If students get M2 upside down lose M2 + M3 Check that students who get correct answer divide by 16 and 19 (not 8 and 9). If dividing by 8 and 9 lose M2 and M3 but could allocate M4 ie max 2
(2.85 2.85 )
(1 1 )

$$
\begin{aligned}
\mathrm{EF}= & \frac{\mathrm{OF} \text { or } \mathrm{FO}}{\text { Calculation of OF by other correct method }=3 \text { marks }} \\
& \text { Penalise FI by } 1 \text { mark }
\end{aligned}
$$

MF (= $70.0 / 35)=\mathrm{O}_{2} \mathrm{~F}_{2}$ or $\mathrm{F}_{2} \mathrm{O}_{2}$
1
[14]

M2. (a) (i) Macromolecular / giant covalent / giant molecular / giant atomic If covalent, molecular, giant, lattice, hexagonal or blank mark
on.
If metallic, ionic or IMF chemical error CE $=0$ for (a)(i), (a)(ii) and (a)(iii).
(ii) Delocalised electrons / free electrons

Able to move / flow (through the crystal)
Allow M2 for electrons can move / flow.
Ignore electrons can carry a current / charge.
(iii) Covalent bonds

Many /strong / hard to break / need a lot of energy to break M2 dependent on M1. Ignore van der Waals' forces.
(b) (i) (Giant) metallic / metal (lattice)

If FCC or BCC or HCP or giant or lattice, mark on.
If incorrect (b)(i), chemical error CE for (b)(ii) and (c)(ii).
(ii) Nucleus / protons / positive ions and delocalised electrons (are attracted)

QWC Must be delocalised electrons - not just electrons.
Chemical error $=0 / 2$ for (b)(ii) if other types of bonding or IMF mentioned.

## Strong attraction

Allow strong metallic bonding for one mark if M1 and M2 are not awarded.
(c) (i) Layers of atoms/ions slide (over one another)

Do not allow just layers.
(ii) (Strong) (metallic) bonding re-formed / same (metallic) bonding / retains same (crystal) structure / same bond strength / same attraction between protons and delocalised electrons as before being hammered or words to that effect

If IMF, molecules, chemical error $C E=0 / 1$ for (c)(ii).
If metallic not mentioned in (b)(i) or (b)(ii) it must be mentioned here in (c)(ii) to gain this mark.
Do not allow metallic bonds broken alone.
Ignore same shape or same strength.
(d) (giant) Ionic

If not ionic, chemical error $C E=0 / 3$

Between + and - ions / oppositely charged ions or $\mathrm{Mg}^{2+}$ and $\mathrm{O}^{2-}$ If molecules mentioned in explanation lose M2 and M3
Allow one mark for a strong attraction between incorrect charges on the ions.

Strong attraction

M3. (a) (i) Metallic
Allow body centred cubic
(ii)

One mark for regular arrangement of particles. Can have a space between them
Do not allow hexagonal arrangement

## OR


$\mathrm{Na}^{+} \mathrm{Na}^{+} \mathrm{Na}^{+}$
$\mathrm{Na}^{+} \mathrm{Na}^{+} \mathrm{Na}^{+}$
One mark for + in each
Ignore electrons
If it looks like ionic bonding then $C E=0 / 2$
(b) (i) Ionic $C E=0$ for (b)(i) and (b)(ii) if not ionic
(ii) Strong (electrostatic) attraction

Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2

Between oppositely charged ions / particles
Or + and - ions
(c) lodide / I- bigger (ion) (so less attraction to the Na+ ion)

Need comparison
Do not allow iodine is a bigger atom Ignore I has one more $c$ - shell
CE = 0 if IMF / covalent / metallic mentioned

M4.(a) Covalent

> If not covalent $C E=0 / 2$
> If dative covalent $C E=0 / 2$
> If blank mark on
> Ignore polar
> If number of pairs of electrons specified, must be 3

Shared pair(s) of electrons / one electron from Br and one electron from F Not 2 electrons from 1 atom Not shared pair between ions/molecules
(b) (i)


$\mathrm{BrF}_{3}$ should have 3 bp and 2 lp and correct atoms for the mark
Penalise FI
$\mathrm{BrF}_{3}$ if trigonal planar shown $=120^{\circ}$
Allow $84-90^{\circ}$ or $120^{\circ}$ and ignore $180^{\circ}$
or if T shape shown $84-90^{\circ}$
Irrespective of shape drawn
(ii)

$\mathrm{BrF}_{4}^{-}$should have 4 bp and 2 lp and all atoms for the mark(ignore sign)
Allow FI

Only
Ignore $180^{\circ}$
(c) Ionic or (forces of) attraction between ions / bonds between ions

If molecules, IMF, metallic, $C E=0$
If covalent bonds mentioned, $0 / 3$, unless specified within the $\mathrm{BrF}_{4}^{-}$ion and not broken
Ignore atoms

Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds

1

Between $\mathrm{K}^{+}$and $\mathrm{BrF}_{4}^{-}$ions/oppositely charged ions / + and - ions
If ions mentioned they must be correct
Strong bonds between + and - ions $=3 / 3$
(d) (i) Hydrogen bonds/hydrogen bonding/H bonds/H bonding Not just hydrogen 1
(ii)


One mark for 4 partial charges
One mark for 6 lone pairs
One mark for H bond from the lone pair to the $\mathrm{H} \delta+$
Allow FI
If more than 2 molecules are shown they must all be correct.Treat any errors as contradictions within each marking point.
$C E=0 / 3$ if incorrect molecules shown.
(e) vdw / van der Waals forces between molecules

QoL
Not vdw between HF molecules, CE = 0/2
$v d w$ between atoms, CE = 0/2
If covalent, ionic, metallic, $C E=0 / 2$

IMF are weak / need little energy to break IMF / easy to overcome IMF

M5.(a) Lithium / Li
Penalise obvious capital I (second letter).
(b) (i) Increase / gets bigger

Ignore exceptions to trend here even if wrong
(ii) Boron / B

If not Boron, $C E=0 / 3$

Electron removed from (2)p orbital /sub-shell / (2)p electrons removed If $p$ orbital specified it must be $2 p$

Which is higher in energy (so more easily lost) / more shielded (so more easily lost) / further from nucleus
(c) $\mathrm{C} /$ carbon

1
(d) Below Li


The cross should be placed on the diagram, on the column for nitrogen, below the level of the cross printed on the diagram for Lithium.
(e) Macromolecular / giant molecular / giant atomic Allow giant covalent (molecule) $=2$

Covalent bonds in the structure

Strong (covalent) bonds must be broken or overcome / (covalent) bonds need a lot of energy to break

## Ignore weakening / loosening bonds

If ionic / metallic/molecular/ dipole dipole/ H bonds/ bonds between molecules, CE = 0/3
Ignore van der Waals forces
Ignore hard to break

